入門テキスト「抽象線形代数学」

入門テキスト「抽象線形代数学」の表紙

概要

このテキストでは、実数体や複素数体に限らない、一般の体上の線形代数学について解説する。

目次

  1. ベクトル空間

    本章では、一般の体上のベクトル空間の基本的な性質について解説する。

    $$\newcommand{AA}[0]{\mathscr{A}} \newcommand{abs}[1]{\left\lvert#1\right\rvert} \newcommand{angleb}[1]{\left\langle #1 \right\rangle} \newcommand{Arg}[0]{\operatorname{Arg}} \newcommand{Ba}[0]{\mathbf{a}} \newcommand{BB}[0]{\mathscr{B}} \newcommand{Bb}[0]{\mathbf{b}} \newcommand{Be}[0]{\mathbf{e}} \newcommand{Bu}[0]{\mathbf{u}} \newcommand{Bv}[0]{\mathbf{v}} \newcommand{Bw}[0]{\mathbf{w}} \newcommand{Bx}[0]{\mathbf{x}} \newcommand{By}[0]{\mathbf{y}} \newcommand{Bzr}[0]{\mathbf{0}} \newcommand{C}[0]{\mathbb{C}} \newcommand{CC}[0]{\mathscr{C}} \newcommand{F}[0]{\mathbb{F}} \newcommand{floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{im}[0]{\operatorname{Im}} \newcommand{ind}[0]{\mathrm{ind}} \newcommand{K}[0]{\mathbb{K}} \newcommand{Ker}[0]{\operatorname{Ker}} \newcommand{L}[0]{\mathbb{L}} \newcommand{mmod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{Mod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{N}[0]{\mathbf{N}} \newcommand{ord}[0]{\mathrm{ord}} \newcommand{Q}[0]{\mathbb{Q}} \newcommand{R}[0]{\mathbb{R}} \newcommand{rank}[0]{\operatorname{rank}} \newcommand{span}[0]{\operatorname{span}} \newcommand{SS}[0]{\mathscr{S}} \newcommand{TT}[0]{\mathscr{T}} \newcommand{UU}[0]{\mathscr{U}} \newcommand{wenvert}[1]{\left\lvert\left\lvert#1\right\rvert\right\rvert} \newcommand{Z}[0]{\mathbb{Z}} $$
    1. ベクトル空間の定義
    2. 部分空間
    3. 線形独立性とベクトル空間の基底
    4. ベクトル空間の和と直和
    5. 体とベクトル空間
  2. 内積

    本章では、一般的なベクトル空間上の内積やノルムの概念について解説する。

    $$\newcommand{AA}[0]{\mathscr{A}} \newcommand{abs}[1]{\left\lvert#1\right\rvert} \newcommand{angleb}[1]{\left\langle #1 \right\rangle} \newcommand{Arg}[0]{\operatorname{Arg}} \newcommand{Ba}[0]{\mathbf{a}} \newcommand{BB}[0]{\mathscr{B}} \newcommand{Bb}[0]{\mathbf{b}} \newcommand{Be}[0]{\mathbf{e}} \newcommand{Bu}[0]{\mathbf{u}} \newcommand{Bv}[0]{\mathbf{v}} \newcommand{Bw}[0]{\mathbf{w}} \newcommand{Bx}[0]{\mathbf{x}} \newcommand{By}[0]{\mathbf{y}} \newcommand{Bzr}[0]{\mathbf{0}} \newcommand{C}[0]{\mathbb{C}} \newcommand{CC}[0]{\mathscr{C}} \newcommand{F}[0]{\mathbb{F}} \newcommand{floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{im}[0]{\operatorname{Im}} \newcommand{ind}[0]{\mathrm{ind}} \newcommand{K}[0]{\mathbb{K}} \newcommand{Ker}[0]{\operatorname{Ker}} \newcommand{L}[0]{\mathbb{L}} \newcommand{mmod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{Mod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{N}[0]{\mathbf{N}} \newcommand{ord}[0]{\mathrm{ord}} \newcommand{Q}[0]{\mathbb{Q}} \newcommand{R}[0]{\mathbb{R}} \newcommand{rank}[0]{\operatorname{rank}} \newcommand{span}[0]{\operatorname{span}} \newcommand{SS}[0]{\mathscr{S}} \newcommand{TT}[0]{\mathscr{T}} \newcommand{UU}[0]{\mathscr{U}} \newcommand{wenvert}[1]{\left\lvert\left\lvert#1\right\rvert\right\rvert} \newcommand{Z}[0]{\mathbb{Z}} $$
    1. 内積の定義
    2. ノルム
    3. ベクトルの直交
    4. 直交基底
  3. 線形写像

    本章では、一般的なベクトル空間の間の線形写像および一般的なベクトル空間上の線形変換について解説する。

    $$\newcommand{AA}[0]{\mathscr{A}} \newcommand{abs}[1]{\left\lvert#1\right\rvert} \newcommand{angleb}[1]{\left\langle #1 \right\rangle} \newcommand{Arg}[0]{\operatorname{Arg}} \newcommand{Ba}[0]{\mathbf{a}} \newcommand{BB}[0]{\mathscr{B}} \newcommand{Bb}[0]{\mathbf{b}} \newcommand{Be}[0]{\mathbf{e}} \newcommand{Bu}[0]{\mathbf{u}} \newcommand{Bv}[0]{\mathbf{v}} \newcommand{Bw}[0]{\mathbf{w}} \newcommand{Bx}[0]{\mathbf{x}} \newcommand{By}[0]{\mathbf{y}} \newcommand{Bzr}[0]{\mathbf{0}} \newcommand{C}[0]{\mathbb{C}} \newcommand{CC}[0]{\mathscr{C}} \newcommand{F}[0]{\mathbb{F}} \newcommand{floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{im}[0]{\operatorname{Im}} \newcommand{ind}[0]{\mathrm{ind}} \newcommand{K}[0]{\mathbb{K}} \newcommand{Ker}[0]{\operatorname{Ker}} \newcommand{L}[0]{\mathbb{L}} \newcommand{mmod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{Mod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{N}[0]{\mathbf{N}} \newcommand{ord}[0]{\mathrm{ord}} \newcommand{Q}[0]{\mathbb{Q}} \newcommand{R}[0]{\mathbb{R}} \newcommand{rank}[0]{\operatorname{rank}} \newcommand{span}[0]{\operatorname{span}} \newcommand{SS}[0]{\mathscr{S}} \newcommand{TT}[0]{\mathscr{T}} \newcommand{UU}[0]{\mathscr{U}} \newcommand{wenvert}[1]{\left\lvert\left\lvert#1\right\rvert\right\rvert} \newcommand{Z}[0]{\mathbb{Z}} $$
    1. 線形写像
    2. 次元定理
    3. 線形写像と内積
    4. 剰余類と商空間
    5. 同型写像
    6. 準同型定理
    7. 線形変換で安定な部分空間
  4. 直交行列、エルミート行列、ユニタリー行列

    本章では行列の対角化にあたって重要となる直交行列、エルミート行列、ユニタリー行列について解説する。

    $$\newcommand{AA}[0]{\mathscr{A}} \newcommand{abs}[1]{\left\lvert#1\right\rvert} \newcommand{angleb}[1]{\left\langle #1 \right\rangle} \newcommand{Arg}[0]{\operatorname{Arg}} \newcommand{Ba}[0]{\mathbf{a}} \newcommand{BB}[0]{\mathscr{B}} \newcommand{Bb}[0]{\mathbf{b}} \newcommand{Be}[0]{\mathbf{e}} \newcommand{Bu}[0]{\mathbf{u}} \newcommand{Bv}[0]{\mathbf{v}} \newcommand{Bw}[0]{\mathbf{w}} \newcommand{Bx}[0]{\mathbf{x}} \newcommand{By}[0]{\mathbf{y}} \newcommand{Bzr}[0]{\mathbf{0}} \newcommand{C}[0]{\mathbb{C}} \newcommand{CC}[0]{\mathscr{C}} \newcommand{F}[0]{\mathbb{F}} \newcommand{floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{im}[0]{\operatorname{Im}} \newcommand{ind}[0]{\mathrm{ind}} \newcommand{K}[0]{\mathbb{K}} \newcommand{Ker}[0]{\operatorname{Ker}} \newcommand{L}[0]{\mathbb{L}} \newcommand{mmod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{Mod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{N}[0]{\mathbf{N}} \newcommand{ord}[0]{\mathrm{ord}} \newcommand{Q}[0]{\mathbb{Q}} \newcommand{R}[0]{\mathbb{R}} \newcommand{rank}[0]{\operatorname{rank}} \newcommand{span}[0]{\operatorname{span}} \newcommand{SS}[0]{\mathscr{S}} \newcommand{TT}[0]{\mathscr{T}} \newcommand{UU}[0]{\mathscr{U}} \newcommand{wenvert}[1]{\left\lvert\left\lvert#1\right\rvert\right\rvert} \newcommand{Z}[0]{\mathbb{Z}} $$
    1. 随伴変換と随伴行列
    2. 随伴変換の性質
    3. Hermite変換
    4. ユニタリー変換
    5. 正規変換
  5. 固有値と対角化

    線形写像は、基底をうまく選ぶことで見やすい形であらわすことができる。これは、行列の共役を単純な形になるようにとることに相当する。 とくに、線形写像を対角写像としてあらわすこと、あるいはこれに相当して行列の共役として対角行列をみつけることを対角化という。 本章では、線形写像及び行列を単純化する上で重要となる、線形写像および行列の固有値と固有空間について解説し、続いて線形写像および行列の対角化について解説する。

    $$\newcommand{AA}[0]{\mathscr{A}} \newcommand{abs}[1]{\left\lvert#1\right\rvert} \newcommand{angleb}[1]{\left\langle #1 \right\rangle} \newcommand{Arg}[0]{\operatorname{Arg}} \newcommand{Ba}[0]{\mathbf{a}} \newcommand{BB}[0]{\mathscr{B}} \newcommand{Bb}[0]{\mathbf{b}} \newcommand{Be}[0]{\mathbf{e}} \newcommand{Bu}[0]{\mathbf{u}} \newcommand{Bv}[0]{\mathbf{v}} \newcommand{Bw}[0]{\mathbf{w}} \newcommand{Bx}[0]{\mathbf{x}} \newcommand{By}[0]{\mathbf{y}} \newcommand{Bzr}[0]{\mathbf{0}} \newcommand{C}[0]{\mathbb{C}} \newcommand{CC}[0]{\mathscr{C}} \newcommand{F}[0]{\mathbb{F}} \newcommand{floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{im}[0]{\operatorname{Im}} \newcommand{ind}[0]{\mathrm{ind}} \newcommand{K}[0]{\mathbb{K}} \newcommand{Ker}[0]{\operatorname{Ker}} \newcommand{L}[0]{\mathbb{L}} \newcommand{mmod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{Mod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{N}[0]{\mathbf{N}} \newcommand{ord}[0]{\mathrm{ord}} \newcommand{Q}[0]{\mathbb{Q}} \newcommand{R}[0]{\mathbb{R}} \newcommand{rank}[0]{\operatorname{rank}} \newcommand{span}[0]{\operatorname{span}} \newcommand{SS}[0]{\mathscr{S}} \newcommand{TT}[0]{\mathscr{T}} \newcommand{UU}[0]{\mathscr{U}} \newcommand{wenvert}[1]{\left\lvert\left\lvert#1\right\rvert\right\rvert} \newcommand{Z}[0]{\mathbb{Z}} $$
    1. 固有値
    2. 固有多項式
    3. 代数閉体
    4. 実対称行列の固有値
    5. Hermite行列の固有値と対角化
    6. ユニタリー変換の固有値と対角化
    7. 正規変換の対角化
  6. 2次形式

    2次の同次式は一般的なベクトル空間上の2次形式に一般化される。本章では、一般的なベクトル空間上の2次形式について解説する。

    $$\newcommand{AA}[0]{\mathscr{A}} \newcommand{abs}[1]{\left\lvert#1\right\rvert} \newcommand{angleb}[1]{\left\langle #1 \right\rangle} \newcommand{Arg}[0]{\operatorname{Arg}} \newcommand{Ba}[0]{\mathbf{a}} \newcommand{BB}[0]{\mathscr{B}} \newcommand{Bb}[0]{\mathbf{b}} \newcommand{Be}[0]{\mathbf{e}} \newcommand{Bu}[0]{\mathbf{u}} \newcommand{Bv}[0]{\mathbf{v}} \newcommand{Bw}[0]{\mathbf{w}} \newcommand{Bx}[0]{\mathbf{x}} \newcommand{By}[0]{\mathbf{y}} \newcommand{Bzr}[0]{\mathbf{0}} \newcommand{C}[0]{\mathbb{C}} \newcommand{CC}[0]{\mathscr{C}} \newcommand{F}[0]{\mathbb{F}} \newcommand{floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{im}[0]{\operatorname{Im}} \newcommand{ind}[0]{\mathrm{ind}} \newcommand{K}[0]{\mathbb{K}} \newcommand{Ker}[0]{\operatorname{Ker}} \newcommand{L}[0]{\mathbb{L}} \newcommand{mmod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{Mod}[1]{\ \left(\mathrm{mod}\ #1\right)} \newcommand{N}[0]{\mathbf{N}} \newcommand{ord}[0]{\mathrm{ord}} \newcommand{Q}[0]{\mathbb{Q}} \newcommand{R}[0]{\mathbb{R}} \newcommand{rank}[0]{\operatorname{rank}} \newcommand{span}[0]{\operatorname{span}} \newcommand{SS}[0]{\mathscr{S}} \newcommand{TT}[0]{\mathscr{T}} \newcommand{UU}[0]{\mathscr{U}} \newcommand{wenvert}[1]{\left\lvert\left\lvert#1\right\rvert\right\rvert} \newcommand{Z}[0]{\mathbb{Z}} $$
    1. 2次形式
    2. 数ベクトル空間上の2次形式
    3. 2次形式の変換
    4. 実2次曲線と実2次曲面
    5. 退化次数

参考文献

[1]
Serge Lang, Linear Algebra, 3rd ed., Undergraduate Texts in Mathematics, Springer, 1987